
COFOps Software User’s Manual
Version 1.5 of 1998/06/04 06:45:26

Rick Crowhurst
rick@picturel.com

Picture Elements, Inc.

1. Scope

This document describes theCOFOps software package, which is a TCL-based tool set for creating, manipulating,
and verifying COF file sets.

2. Introduction

COF (Common Output Format) is a standard for the interchange of images and associated financial data between the
Federal Reserve Bank and financial institutions; it describes how this information is organized into sets of files, with
particular names and formats, on a piece of COF media.COFOps is a public domain package of tools for creating,
manipulating, and verifying COF files and files sets. Its purpose is to provide standard test file sets for testing COF
readers, and to verify file sets in order to test COF writers.

COFOps is provided in source code; it is implemented in the C and TCL languages. It was developed and tested
under the Linux operating system, but it should be easily transportable to any platform that supports C and TCL.
The use of TCL (Tool Control Language) allows the manipulation tools to be used interactively as well as within
TCL scripts; TCL is described in Tcl and the Tk Toolkit by John Ousterhout. It is a standard component of Linux;
for platforms that don’t provide TCL, it can be downloaded as source code free of cost by anonymous FTP from

ftp://ftp.smli.com/pub/tcl

Section 3 of this document describes the management of the software package, including unpacking, program gener-
ation, and program installation. Section 4 describes the executable programs provided by the package, and section 5
describes the commands provided in the TCL extensions that allow COF files to be manipulated from within TCL
scripts or interactively. Finally, section 6 lists a number of limitations of the current version of the package.

3. COFOps Package Management

This section gives Linux command sequences for performing various routine manipulations of the software package.
In all cases, it is assumed that the directory˜ has been chosen as the home directory for the package.

3.1. Unpacking the Software

This software is distributed as the gzip’d tar file "cofops-X.XX.tgz ", where "X.XX " giv es the version number.
To unpack the distribution file, move it into ˜ and execute:

cd ˜
gunzip cofops-X.XX.tgz
tar xf cofops-X.XX.tar

It is convenient, but not required, to add a symbolic linkcofops , which conventionally refers to the current version
of COFOps:

cd ˜
ln -s cofops-X.XX cofops

This link will be assumed in the sequel.

-2-

3.2. Generating the Libraries:

After the package has been unpacked, the libraries can be generated by:

cd ˜/cofops
make

This will produce the TCL extensions in the form of the shared librarieslibini.so , libimg.so , and lib-
dbf.so .

3.3. Installing the Package

After the libraries have been generated, the package can be installed with:

cd ˜/cofops
su
make install

This will copy the libraries into/usr/lib and the programcofck.tcl into /usr/local/bin as
/usr/local/bin/cofck . The package is now ready for use.

3.4. Document Generation

To generate this document, execute:

cd ˜/cofops
make cofops.ps

4. COFOps Programs

This section describes the executable programs provided byCOFOps. These programs are implemented as TCL
scripts and installed in/usr/local/bin by "make install ", as described in section 3.3. They require that
theCOFOps libraries be installed in/usr/lib (this is also done by "make install ") and that the TCL shell
/usr/bin/tclsh be present.

4.1. cofck

cofck is a program that checks the validity of COF file sets and reports any deviations from the COF specification
(version 1.3) that are discovered. It takes a single argument which is the directory in which the file set is found. For
example, in Linux, the command

cofck /mnt/cdrom

checks the COF file set on a (mounted) CD-ROM. The program displays "WARNING" for variances from the spec-
ification that do not forcecofck to abort the check; for fatal errors, it displays "ERROR".

4.2. cofgen

cofgenwill be a program that generates a canonical COF data set. Currently,cofgenis unimplemented.

4.3. cofsum

cofsumcomputes and returns the COF checksum of any file, or of the standard input if no file is given.

5. COFOps TCL Extensions

TCL allows the programmer to extend the TCL language by adding C functions that can be called by the TCL inter-
preter. In Linux, these "TCL extensions" can be packaged as shared libraries and loaded dynamically. InCOFOps,
the low-level support for the programs described above insection 4 is provided by the TCL extension librarieslib-
ini.so , libimg.so , andlibdbf.so , and these extensions are also available to the user for use either in TCL
scripts or interactively with the TCL shell; they allow individual COF files to be created, examined, and manipu-
lated.

Each TCL extension provides commands associated with a particular COF file format:libini.so handles header
and trailer files, which are in ".INI" format,libimg.so is for the .IMG files, andlibdbf.so is for the data
(.DBF) files. A typical application will start by loading the extensions with:

-3-

load libini.so
load libimg.so
load libdbf.so

Since the TCLload command looks in/usr/lib by default, the full path names need not be provided.

The following sections describe each extension in detail.

5.1. TCL Extension for COF Header and Trailer Files (libini.so)

This extension supports the reading of files in Windows ".INI" format, which includes all COF header and trailer
files. Note that only READ support is provided; modifying .INI files in TCL is more appropriately done by invoking
a text editor.

This extension provides the following command:

iniRead array path

This command opens an parses a .INI file at the givenpathand builds the named
array, which holds the following elements:
$array(.)

This element is a TCL list containing the names of all of the sections
found in the .INI file

$array(section)
This element is a TCL list containing the names of all of the variables
assigned in all of the sections namedsection.

$array(section,variable)
This element is the string value assigned to the givenvariable in the
givensectionof the .INI file

For example, if the filetest.ini holds:

[FileName]
FileName=test.ini

[Info]
SomeNumber=6
SomeString=This is a string

and the following TCL commands are executed:

load libini.so
iniRead ini test.ini
puts $ini(Info,SomeString)

then the following output is produced:

This is a string

As another example, the following TCL sequence parses a .INI file into an array, then displays the array in .INI for-
mat:

load libini.so
iniRead ini test.ini
foreach section $ini(.) {

puts "\[$section\]"
foreach variable $ini($section) {

puts "$variable=$ini($section,$variable)" } }

-4-

5.2. TCL Extension for COF Image Files (libimg.so)

This extension supports the parsing and interpretation of COF ".IMG" files by providing the following TCL com-
mands:

imgOpen name path
This command opens and interprets the file at the specifiedpath as a .IMG file,
and creates the givennameas an access function for the file;namecan then be
used as described by the following three commands. If any syntax errors are
found, the function returns with an error message.

name items
This command returns a TCL list that describes the entire parsed file; its format
is described below.

name verification
This returns two numbers: the size of the file in bytes and the calculated check-
sum.

name extract file itemid viewid
This command extracts a selected image from the .IMG file and writes it into the
given file, which must be open for BINARY writing using the TCLopen com-
mand. itemidandviewidselect the image; they are derived from the items list.

The items list returned by the "nameitems " command is illustrated by the TCL example below. It has an element
for each item in the .IMG file; each such element is itself a list whose elements are the item id, the item data list, and
the item view list. Each view in the view list is a list that gives the view id, the side (F or B), the type (TIFFG4, etc),
the offset within the image file, and the length of the view within the image file.

load libimg.so
imgOpen items test.img
foreach item $items {

set item_id [lindex $item 0]
set datalist [lindex $item 1]
set views [lindex $item 2]
foreach view $views {

set vid [lindex $view 0]
set side [lindex $view 1]
set type [lindex $view 2]
set foff [lindex $view 3]
set flen [lindex $view 4] } }

-5-

5.3. TCL Extension for COF Data Files (libdbf.so)

This extension supports the reading and writing of COF data (dBASE) files by providing the following TCL com-
mands:

dbfCreate path field-spec...
This command creates a .DBF file with the givenpath and with fields specified
by the givenfield-specs. field-specis described below.

dbfOpen name path
This command opens the file with the givenpath and creates the givennameas
an access function for the file;namecan then be used as described by the follow-
ing three commands.

name nrecords
Returns the number of records in the .DBF file.

name headerSize
Returns the size in bytes of the .DBF file header.

name recordSize
Returns the size in bytes of a .DBF file record.

name fields
This command returns a list of the fields of the .DBF file. Each field is repre-
sented in thefield-specformat, described below.

name add field-value...
This command adds a new record with the givenfield-values to the .DBF file.
The quanity and contents of the fields are checked. Eachfield-valueis repre-
sented in the format appropriate to the field type: for character data, thefield-
valueis a string with trailing blanks removed; Numerical data is given as a TCL
number.

name record number
This command returns the record with the givennumberif it exists and is not
marked as deleted; otherwise, it returns with an error.

Thefield-specargument used by the commands above has the following definition:

field-spec
A field specification is a TCL list with the following elements:

name the name of the field
type the field type, either C, D, L, or N
length the length of the field
decimal the size of the decimal part

6. Limitations of the Current Version

The current version ofCOFOps has the following limitations:

1. Generation of COF file sets is not implemented.
2. Manipulation and verification of COF index (.NDX) files is not implemented.
3. Handling of COF media sets consisting of than one piece of media is not implemented.

